

Language & Cognition

Dynamic Event Types and Profiling in Motion Frames

Towards a frame-semantic account of the diversity of motion expressions

Michael Herweg

Heidelberg, HULC Lab Day, 11-05-2017

Objectives

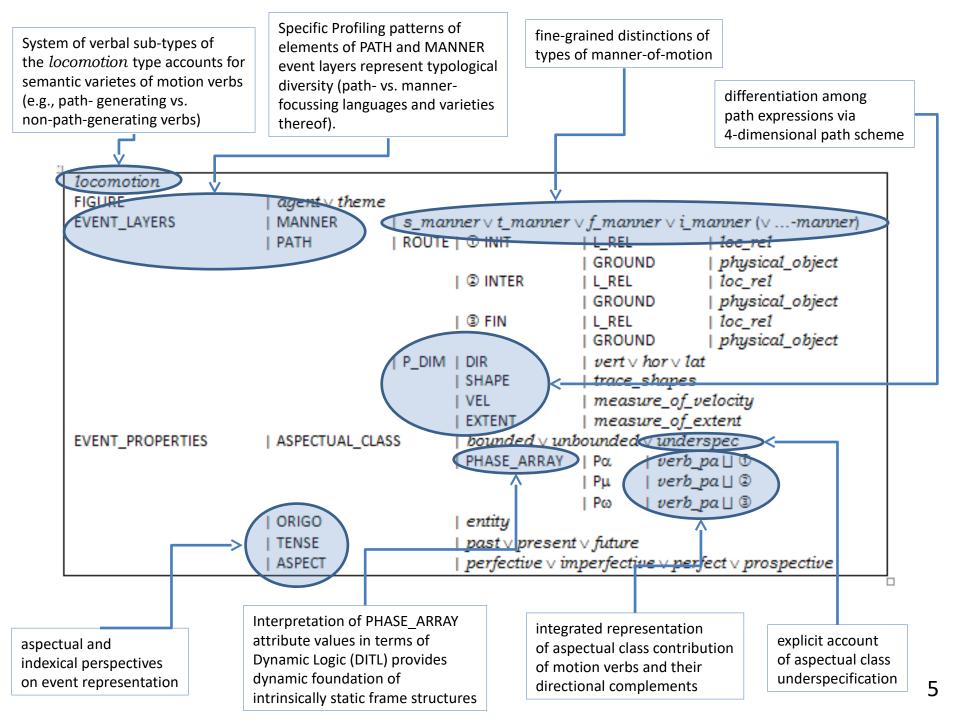
- To develop a semantic framework
 - that may account for the diversity of motion expressions within a language and across typologically distinct languages
 - that provides a unified format to accommodate relevant concepts from both theoretical and cognitive linguistics, as well as to represent findings from experimental psycholinguistic research
 - whose elements are well-defined via their foundation in logic-based spatiotemporal model structures (vs. mere 'markerese')

HULC Lab Research Group "Time and Space in Language and Cognition"

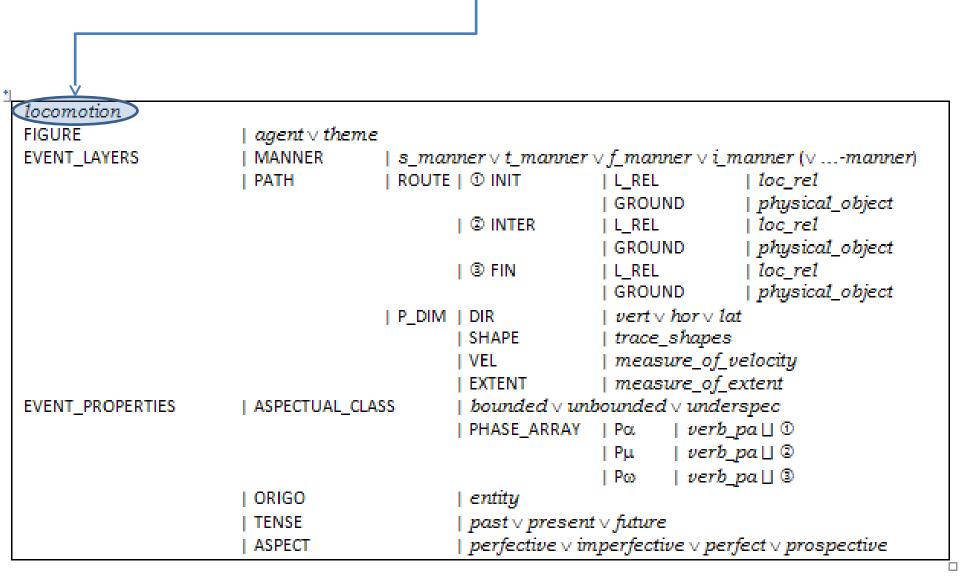
Project:

"A case for semantic underspecification? The representation of aspectual class information for motion verbs and directional prepositions"

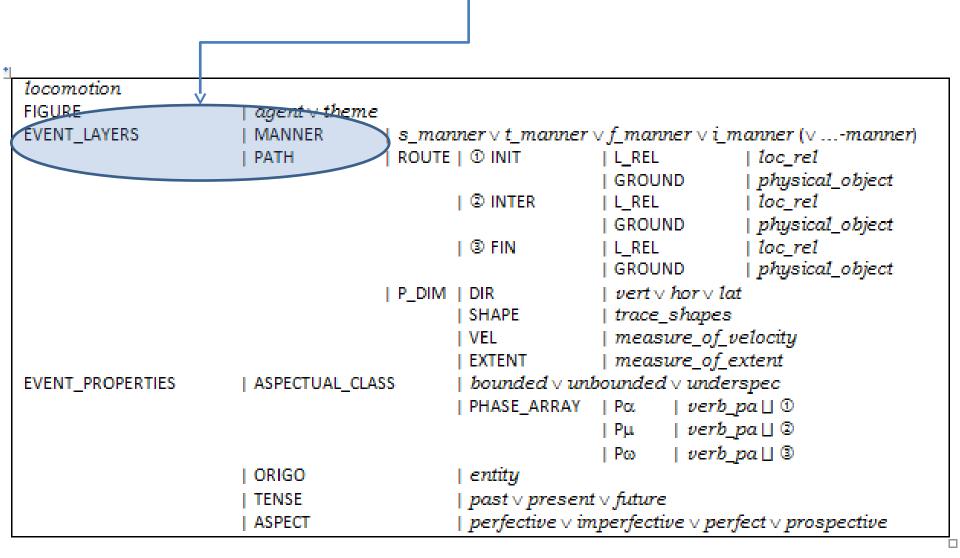
(Johannes Gerwien & Michael Herweg)

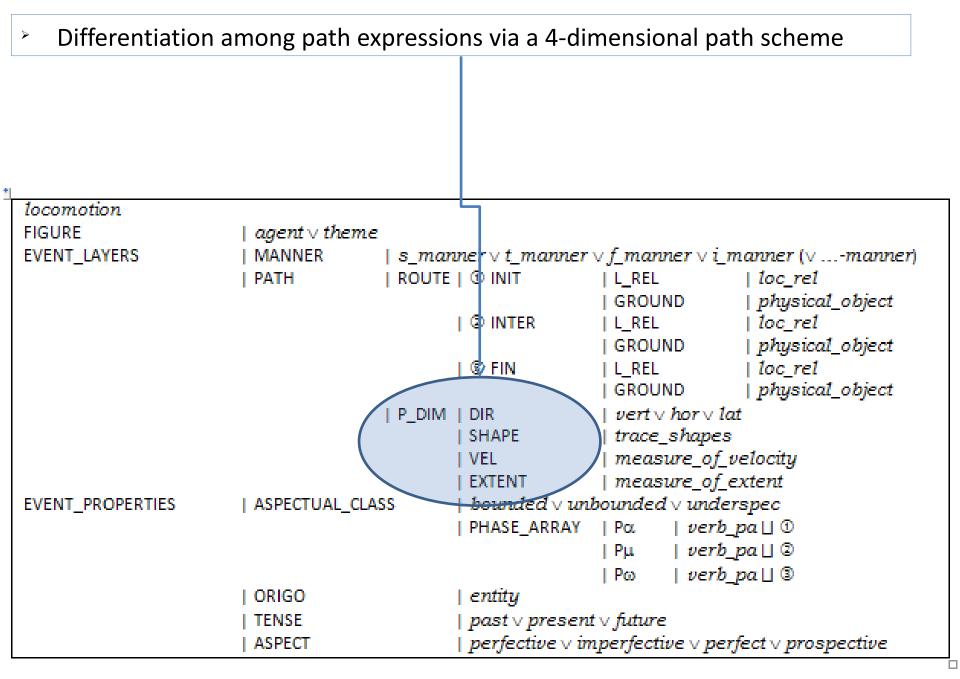

The semantic framework

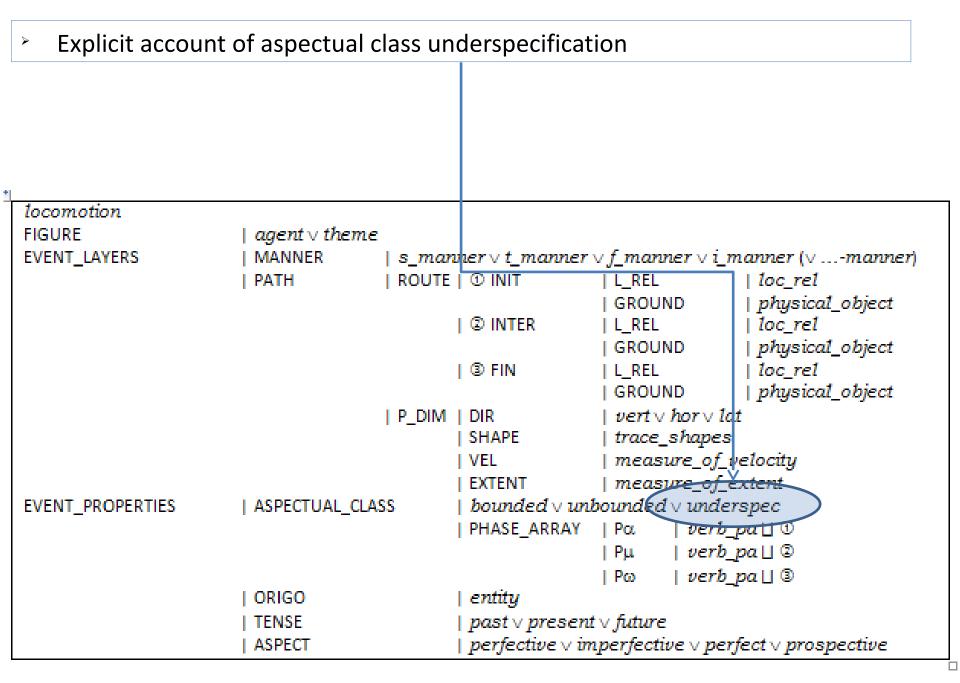
FAMEu – A Frame-Semantic Account of Motion Expressions with Underspecification

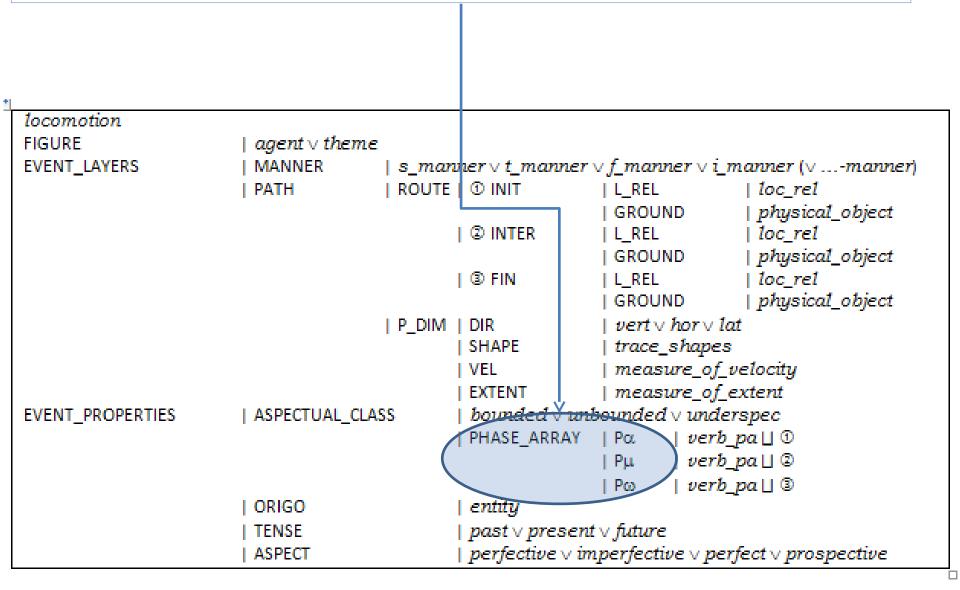

- provenance: Barsalou-Düsseldorf frames (Barsalou 1992; [DFG CRC 991:] Löbner
 2013, Gamerschlag et al. 2014)
 - frames as the basic format in which the mind organizes concepts to represent the categories of things and phenomena in the world
 - formally: typed attribute-value structures with structural invariants and different sorts of constraints
 - here enhanced with weight assignments to values of attributes and their propagation through a frame structure
- key elements of the FAMEu locomotion frame:
 - 2 event layers (cf. Gerwien & von Stutterheim 2016) enriched with elaborate manner and path sub-structures
 - a 3-partite situation-structure concept (Phase Arrays, cf. Herweg 2014) to represent - possibly underspecified - aspectual class contribution and composition
 - Profiling: Selection, deselection and augmentation of frame elements
 - Dynamic Semantics for path and aspectual class construal

The basic FAMEu *locomotion* frame

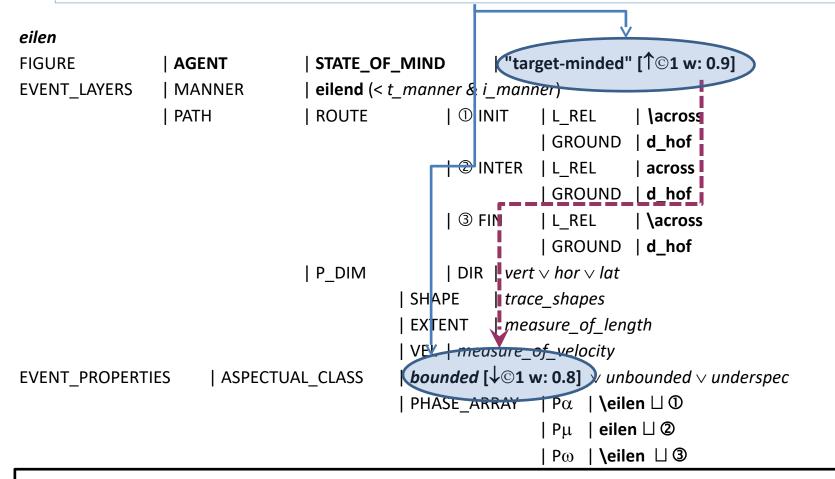

*				
locomotion				
FIGURE	agent∨ theme			
EVENT_LAYERS	MANNER s_ma	nner∨t_manner	·∨ <u>f_</u> manner ∨ i_	manner (vmanner)
	PATH ROUT	E ① INIT	L_REL	loc_rel
			GROUND	physical_object
		🛛 🗵 INTER	L_REL	loc_rel
			GROUND	physical_object
		I ③ FIN	L_REL	loc_rel
			GROUND	physical_object
	P_DIN	1 DIR	$vert \lor hor \lor l$	at
		SHAPE	trace_shape:	s
		VEL	measure_of_	velocity
		EXTENT	measure_of_	extent
EVENT_PROPERTIES	ASPECTUAL_CLASS	bounded∨un	ibounded v unde	erspec
		PHASE_ARRAY	Pa verb	pa∐ ^①
			Pµ verb	_pa⊔®
			Pω verb	_pa∐ 3
	ORIGO	entity		-
	TENSE	past∨ presen	t∨ future	
	ASPECT	perfective ∨ i	nperfective v pe	rfect∨ prospective


System of verbal sub-types of the *locomotion* type accounts for semantic varietes of motion verbs (e.g., path- generating vs. non-path-generating verbs)


Specific Profiling patterns of elements of PATH and MANNER event layers represent typological diversity (path- vs. manner- focussing languages and varieties thereof).


 Fine-grained d 	listinctions of types of I	manner-of-m	otion	
t locomotion				
	1		<u> </u>	
FIGURE	agent ∨ theme			
EVENT_LAYERS			∨ f_manner ∨ i_m	anner (∨manner)
	PATH ROUTE	U INIT	L_REL	loc_rel
			GROUND	physical_object
		© INTER	L_REL	loc_rel
			GROUND	physical_object
		I ③ FIN	L REL	loc rel
			GROUND	physical_object
	P_DIM	DIR	\downarrow vert \lor hor \lor lat	
	1.2000	I SHAPE	trace_shapes	-
		I VEL	measure_of_v	elocitu
		I EXTENT	measure_of_e	-
EVENT PROPERTIES	ASPECTUAL CLASS		↓ measure_0j_e bounded ∨ under	
LVEINI_FROFERIES	ASPECTORE_CERSS			-
		PHASE_ARRAY	Pa verb_j	
			Pμ verb_j	
			Pω verb_j	pa∐ 3
	ORIGO	entity		
	TENSE	$ past \lor present$	t∨ future	
	ASPECT	perfective ∨ in	nperfective v perf	fect ∨ prospective

	presentation of aspectuanal complements	al class contri	bution of mc	otion verbs and
-				
locomotion		 		
FIGURE	agent∨ theme			
EVENT LAYERS	-	hervt manner	√fmannervir	nanner (vmanner)
Event_energy	PATH ROUTE		L REL	loc rel
			GROUND	physical_object
		I ② INTER	L REL	loc rel
		l e neres	GROUND	physical_object
		I ③ FIN	L_REL	loc rel
		1.0.1.0.	GROUND	physical_object
	P DIM	I DIR	vert v hor v la	
	·	SHAPE	trace_shapes	
		I VEL	measure_of_u	
		EXTENT	measure of e	
EVENT PROPERTIES	ASPECTUAL CLASS	bounded∨unb	bounded v under	
_	• –	PHASE ARRAY		pa⊔ 0
		· - (_pa ∐ ②)
			-	$pa \sqcup 3$
	ORIGO	entity		
	TENSE	past v present	∨ future	
	ASPECT			fect∨prospective



 Interpretation of PHASE_ARRAY attribute values in terms of Dynamic Logic (DITL) provides dynamic foundation of intrinsically static frame structures.

Perspectives on event representation for viewpoint aspect and ۶ indexical anchoring in terms of tense and origo position (e.g. for deictic head verbs in SVCs). locomotion FIGURE agent∨theme EVENT LAYERS $| s_manner \lor t_manner \lor f_manner \lor i_manner (\lor ...-manner)$ MANNER | ROUTE | ① INIT L REL | loc rel PATH | physical_object I GROUND ② INTER L REL | loc rel I GROUND | physical_object ③ FIN | loc rel L REL GROUND physical object | P DIM | $| vert \lor hor \lor lat$ DIR | trace_shapes SHAPE measure_of_velocity VEL | measure_of_extent EXTENT I ASPECTUAL CLASS bounded v unbounded v underspec EVENT PROPERTIES $|P\alpha| | verb pa | ①$ PHASE ARRAY | verb pa∐ ② | Pμ | verb_pa∐ ③ I Po ORIGO entity TENSE $past \lor present \lor future$ ASPECT $perfective \lor imperfective \lor perfect \lor prospective$

Assignment of weights to frame elements and their propagation via Dependency Constraints serve to model preferences in the construal of a conceptual interpretation, as evidenced from experimental and corpus-based research.

Attributes, values and weights in this sample frame for *über den Hof eilen* 'hurry across the yard' just serve to illustrate the general approach

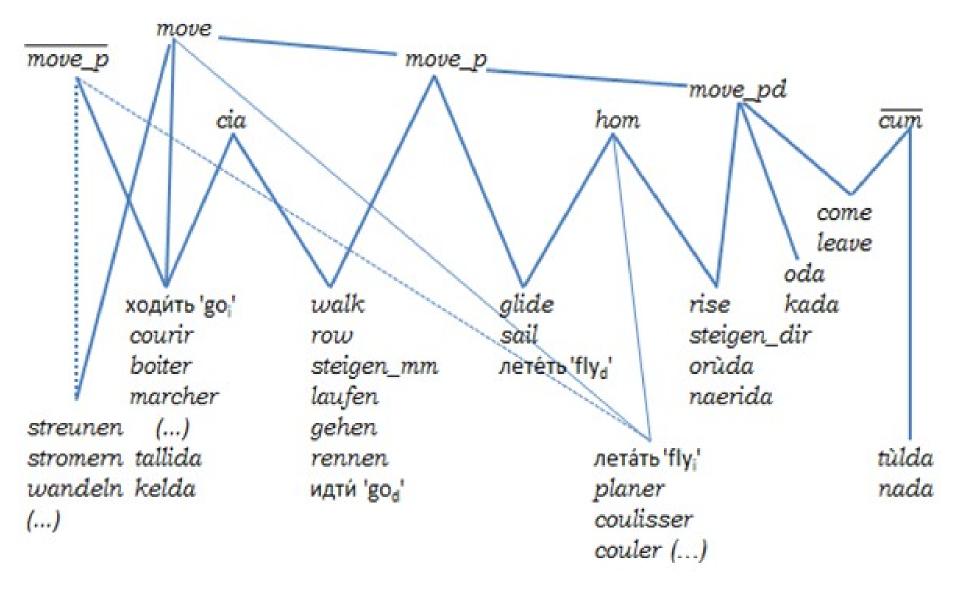
→ collect empirical evidence for interpretation preferences through experiments and corpus research

Dynamic Event Types in FAMEu

- Dynamic foundation of intrinsically static frames via interpretation of PHASE_ARRAY values in a Dynamic Logic, namely a variant of Dynamic Interval Temporal Logic (DITL, Mani & Pustejovsky 2012)
- Definition of a system of verbal types based on DITL-like concepts
 - note: temporal progression is modelled here by forward-overlapping periods, using Allen's (1984) overlap relation 'o'
- basic motion: type *move*


move(f, t) =df $[loc(f, t1) = l1 \Rightarrow loc(f, t2) = l2, t1 o t2, l1 \neq l2]^+$ for t1, t2 \subset t

path-generating motion: type move_p


 $\begin{array}{ll} \textbf{move_p(f, t)} = df & [loc(f, t1) = |1, p = <|1> \implies \\ loc(f, t2) = |2, p = <|1, |2>, t1 o t2, |1 \neq |2]^+ \ for \ t1, t2 \subset t \end{array}$

path-generating directed motion: type move_pd move_pd(f, t) = df [loc(f, t1) = l1, l1 = b, p = \Rightarrow loc(f, t2) = l2, p = <b, l2>, t1 o t2, l1 ≠ l2, d(b, l1) < d(b, l2)]⁺ for t1, t2 ⊂ t

- a 2nd layer of verbal types: towards a representation of manners-of-motion
- by types cia 'Cumulative Iteration of Atoms' and hom '(Non-Segmented) Homogeneous Process'

An Initial FAMEu System of Dynamic Event Types: examples from Russian, German, French and Korean

Rationale for type assignments: German and Russian

German

- Atelic motion verbs like *streunen* 'stray', *stromern* 'roam', ... (Maienborn 1991) resist time-span adverbials, ingressive ("source") and ingressive ("goal") PPs, and measures on paths.
- Underspecified motion verbs like *laufen* 'walk, run', *rennen* 'run' etc. combine well with all types of AC-indicators (time-span and durational adverbials; ingressive, egressive, atelic and underspecified PPs; cf. Herweg 2014).

Russian

- Determinate motion verbs express (uni-)directional motion:
 - лете́ть 'fly' (one direction), идти́ 'go' (one direction)
- Indeterminate motion verbs express non- or multi-directional motion
 - лета́ть 'fly' (non-/multi-directional), ходи́ть 'go' (non-/multi-directional)
 - Zinova & Osswald (2014):
 - Frames for determinate motion verbs include a 'path' attribute,
 - Frames for indeterminate motion verbs include only a 'trace' attribute

Rationale for type assignments: French and Korean

French (cf. Beavers 2009, von Stutterheim & Gerwien 2016, 2017)

 French manner-of-motion verbs like *courir* 'run', *boiter* 'limp', *couler* 'flow' etc. largely resist change-of-state PP complements, but accept General Delimiters (cf. Herweg 2017 on the semantic and pragmatic aspects of GDs)

Korean (Zubizarreta & Oh 2007)

•

- Perspectivizing Deictic Motion Verbs kada 'go' and oda 'come' predominantly serve as heads of SVCs that denote (perspectivized) directed motion.
- Manner-of-motion verbs like *tallida* 'run' and *kelda* 'walk' in general appear only as modifiers in a SVC; if stand-alone, they resist change-of-state adjuncts, but accept GDs.
- Type 1 path Vs orùda 'move up' and naerida 'move down' can appear as verbal heads that provide the path element in a motion expression.
- Type 2 path Vs like tùlda 'move into', nada 'move out of' largely appear only as nonheads in a SVC. In these contexts they are pure change-of-state verbs with no motion component of their own.

Profiling in Cognitive Grammar and Frame Semantics

Langacker's (1983, 1987 etc.) Cognitive Grammar:

- The profile of a predication is a substructure of the conceptual base that has been raised to a special level of prominence and hence serves as the specific focus of attention.
- Profiling is thus a means of assigning prominence to particular elements of a conceptual structure

Gawron's (2011) Frame Semantics:

- Profiling is a function which selects those parts of a frame that the verb highlights.
- Profiling can at the same time enrich a frame and suppress parts of it.

Profiling in FAMEu

Profiling in FAMEu:

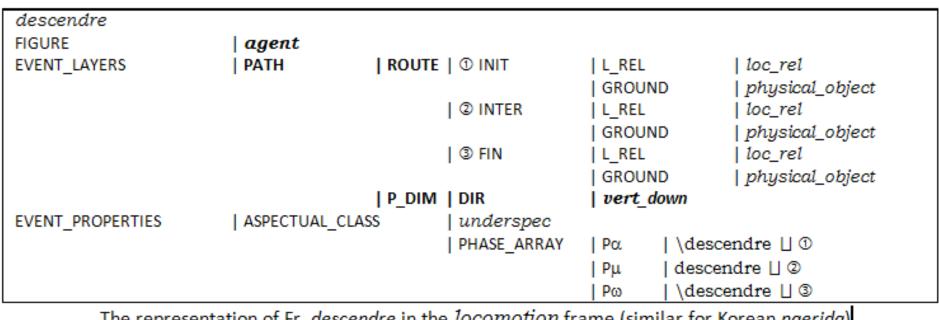
- Profiling is modelled by means of operations on frame attributes that are triggered by particular linguistic items, namely operations that
 - select, specify and expand frame attributes;
 - deselect or suppress frame attributes;
 - determine interrelations and dependencies between frame attributes.
- This extended concept of profiling will be employed *inter alia* in order to
 - account for differences between manner-dominant and path-dominant motion verbs in terms of the event layers they select;
 - capture more fine-grained distinctions among both manner-dominant and pathdominant motion verbs by means of distinctions with regard to the particular sub-attributes they profile within the two layers;
 - diversify other attributes in the basic *locomotion* frame, such as the thematic role of the Figure (agentive, thematic) and its impact on dependent attributes such as the Figure's behaviour, intention, state of mind, etc.

Profiles for path-dominant verbs - 1

The profiles for path-dominant verbs select specific substructures of the PATH attribute and suppress the MANNER attribute.

<i>sortir</i> FIGURE EVENT_LAYERS	<i>agent</i> PATH ROUTE	0 INIT	L_REL	
		ØINTER	GROUND L_REL GROUND	physical_object ~ in physical_object
EVENT_PROPERTIES	ASPECTUAL_CLASS	bounded PHASE_ARRAY	Ρα. ① Ρμ ②	

The representation of the French path verb sortir in the locomotion frame


entrer / tùlda FIGURE EVENT_LAYERS	agent PATH ROUTE	ØINTER	L_REL GROUND	∼ in physical_object
		©FIN	L_REL GROUND	in physical_object
EVENT_PROPERTIES	ASPECTUAL_CLASS	bounded PHASE_ARRAY	Ρμ ② Ρω ③	

The representation of the French path verb entrer in the locomotion frame

- similar semantics for Korean nada 'move out of' and Kor. tùlda 'move into' however:
 - nada and tùlda do not on their own profile PATH | ROUTE but rather depend on the head verb of a serial verb construction to whose PATH | ROUTE profile they only add the change-of-state information ('in' to '~in' and '~in' to 'in', resp.)

Profiles for path-dominant verbs - 2

The profiles for path-dominant verbs select specific substructures of the PATH attribute and suppress the MANNER attribute.

The representation of Fr. descendre in the locomotion frame (similar for Korean naerida)

Profiles for manner-dominant verbs I: non-path-generating manner-of-motion verbs

- Non-path-generating manner-of-motion verbs (FAMEu type move & move_p) profile the MANNER attribute and suppress the PATH attribute.
- Evidence for non-path-generating MoMVs in Korean:
 - Verbs like Kor. *tallida* and *kelda* cannot stand on their own, but require a deictic motion verb, i.e.
 kada 'go' or *oda* 'come', as head of a SVC in order to express the manner of a directed motion:

John-i	kongwen-ey	talli/kel-e-ka-ss-ta
John-Nom	park-Loc	run/walk-L-go-Past-Decl 'John ran/walked to the park'

 Being dependent elements in SVCs, Kor. *tallida* and *kelda* also cannot on their own, i.e. without the support of a deictic motion verb, induce directional readings of locative phrases headed by the postposition *--ey*; cf. Zubizarreta & Oh (2007):

*John-i	kongwen-ey	talli/kel-ess-ta
John-Nom	park-Loc	run/walk-Past-Decl 'John ran/walked to the park'

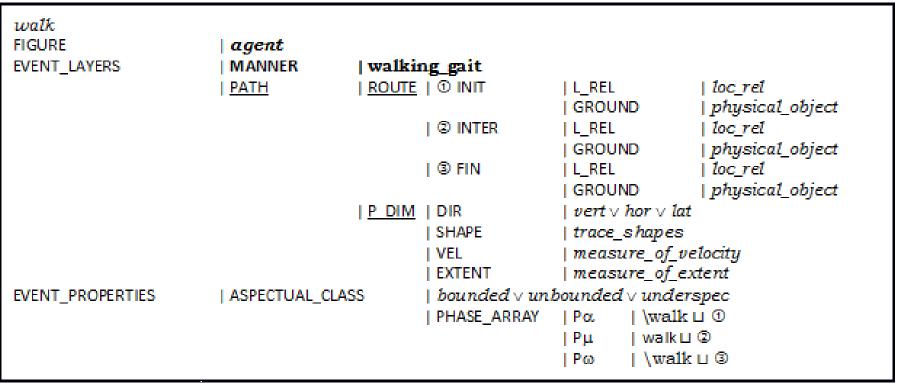
 Zubizarreta & Oh (2007): Korean MoMVs are purely activity-denoting verbs which themselves do not encode any directed motion.

tallida				
FIGURE	agent			
EVENT_LAYERS	MANNER	running_gait		
EVENT_PROPERTIES	ASPECTUAL_CLASS	underspec		
_		PHASE_ARRAY	Ρα	\run
		. –	Ρμ	run
			Ρω	\run
The represent	ation of the Korean pure m	nanner-of-motion ve		a in the locomotion frame

Profiles for manner-dominant verbs II: path-generating manner-of-motion verbs - 1

- The Profile of path-generating manner-of-motion verbs like walk, run, laufen, rennen (FAMEu type move_p) assigns primary focal prominence to the MANNER attribute and secondary focal prominence to the PATH attribute.
 - Evidence for path-generating profile:
 - The MoMVs in question function as heads of VPs with directional complements (a) and can stand on their own in appropriate contexts (b), triggering the interpretation of the existence of a path which is made explicit by the measure phrase in (c):
 - (a) Lola ran around town, Lola rannte durch die Stadt
 - (b) Lola was running, Lola rannte
 - (c) Lola ran two miles, Lola rannte zwei km

Profiles for manner-dominant verbs II: path-generating manner-of-motion verbs - 2


Evidence for different levels of focal prominence:

٠

- Manner is the verb's distinctive meaning contribution, because
 - the verbs in question cover a multitude of fine-grained manner distinctions, each of which is in contrast to a multitude of competing manner: *Walk, don't run!*.
 - verb-specific manners can be further specified by manner adverbs like in *walk* slowly/quickly/sluggishly/..., which yields an even more detailled system of manner elaborations.
- The path element has a secondary status in the profiles of the verbs in question, because
 - properties of the path are distinctive semantic features only for very few manner-of-motion verbs:
 - meander, wind (shape) wade (texture) rise, plunge, plummet (direction)
 - the meanings of the vast majority of manner-of-motion verbs do not incorporate any characteristics of the path. Properties of the path are rather specified by elements which are structurally dependent on the verb, such as directional complements (*run through the jungle*) and adjuncts (*run in circles, run backward/upward*).

Profiles for manner-dominant verbs II: path-generating manner-of-motion verbs - 3

The Profile of path-generating manner-of-motion verbs like walk, run, laufen, rennen (FAMEu type move_p) assigns primary focal prominence to the MANNER attribute and secondary focal prominence to the PATH attribute.

The profile of the path-generating manner-of-motion verb walk

- * three forms of profiling operations on frames effective in the semantics of motion verbs:
 - the pronounced de-selection of frame elements
 - the explicit selection of frame elements with primary focal prominence
 - the affirmation of secondary focus elements

Profiles for path-generating manner-of-motion verbs: graded secondary focus?

A highly specific gait – which means a high prominence of the manner attribute – may lead to a lower prominence of the element with secondary focal prominence, i.e. the PATH attribute.

- Verbs of basic locomotion such as *walk, run, swim, sail, bike, ride* accept measure phrases on paths like *two miles* without reservation.
- Verbs that express highly specific and often quite peculiar gaits like *limp, shuffle* and *trudge* do not go together too well with these phrases if there is no directional complement, at least when contrasted with the above mentioned basic locomotion verbs.
 - Directional complement explicitly accentuates the path.
- (1) a. He walked / ran / rode two miles (through the wilderness).
 - b. ?He limped / shuffled / trudged two miles.
 - c. He limped / shuffled / trudged two miles through the wilderness.
- (2) a. Er lief / rannte / ritt zwei Kilometer (durch die Wildnis).
 - Per hinkte / schwankte / schlurfte / stapfte / stolperte / tapste / torkelte / trottete / watschelte zwei Kilometer.
 - c. Er hinkte / schwankte / schlurfte / stapfte / stolperte / tapste / torkelte / trottete / watschelte zwei Kilometer durch die Wildnis.
- Subject to further research on weighted frame elements

Head-verb external specification of manner: infinite manner verbs

- [Fr.] Il sortit de la maison en courant.
- [Sp.] La botella entró a la cueva flotando.
- [It.] La barca passò sotto il ponte galleggiando.
- [Germ.] Er ging hinkend aus dem Haus.
- [Engl.] He walked out of the house limping.

locomotion	
FIGURE	agent ∨ theme PROPERTIES
	BEHAVIOUR
	The basic structure of the FIGURE attribute

gehen					
FIGURE	AGENT	BEHAVIOUR	MOM_SPEC	🖲 hinken_gait	
EVENT_LAYERS	MANNER	gehen_gait 🛽	•		
	The relevant fra	me extract for hin	kend gehen 'go/w	alk limping'	

cf. non-manner-related concurrent activities:

- [Germ.] Er ging pfeifend aus dem Haus.
- [Engl.] He walked out of the house whistling.

gehen					
FIGURE	AGENT	BEHAVIOUR	CONC_ACT	pfeifen	
EVENT_LAYERS	MANNER	gehen_gait			
	The relevant fran	ne extract for <i>pfeif</i>	end gehen 'go/v	valk whistling'	

Path plus infinite manner verbs in Romanic

sortir				
FIGURE	AGENT	BEHAVIOUR	MOM_SPEC	④ courir_gait
EVENT_LAYERS	MANNER	•		
	PATH	ROUTE ① INIT	L_REL	in
			GROUND	house
		2 INTER	L_REL	~in
			GROUND	house
EVENT_PROPERTIES	ASPECTUAL_CLAS	SS bounded		
		PHASE_ARRAY	Pα ①	
			Pμ ②	
The represent	ntation of French s	sortir de la maison en cou	urant in the locon	notion frame
<u></u>				<u>iotorritanic</u>
descendre				
FIGURE	AGENT	BEHAVIOUR	MOM_SPEC	@marcher_gait
EVENT_LAYERS	MANNER	1 ®	I MOM_SPEC	Smarcher_gart
LVENT_DATERS	PATH	ROUTE 1 INIT	I L_REL	\on
	11000	Theore To han	GROUND	mountain_trail
		I INTER	L_REL	on
		1 S INTER	I GROUND	mountain_trail
		I I FIN	L_REL	\on
			GROUND	mountain_trail
		P_DIM DIR	vert_down	mountain_train
EVENT_PROPERTIES	ASPECTUAL_CLA		I ver Loown	
LVENT_PROPERTIES	LAPLCIONC_COM	PHASE ARRAY	Pα. \desc	cendre 🛛 🛈
		Truesc_Annal		
				endre⊔©
			P ω \des	cendre ⊔®

The representation of Fr. descendre de la montagne en marchant in the locomotion frame

Head-verb external specification of manner: VP-level manner adverbs and dependency constraints

- Dependency constraints serve to capture the impact of one frame attribute on a distinct but related frame attribute.
 - The case of velocity adverbs (walk quickly/slowly):
 - a. DCquickly: FIGURE | AGENT | BEHAVIOUR | EXEC_MODE | \uparrow ©1 quick \rightarrow

```
EVENT_LAYERS | PATH | P_DIM | VEL | \downarrow©1 high
```

b. DCslowly: FIGURE | AGENT | BEHAVIOUR | EXEC_MODE | \uparrow ©2 slow \rightarrow

	_	······		
walk				
FIGURE	AGENT	BEHAVIOUR	EXEC_MODE	Ω₁quick
EVENT_LAYERS	PATH	ROUTE ① INIT	L_REL	loc_rel
			GROUND	physical_object
		2 INTER	L_REL	loc_rel
			GROUND	physical_object
		③ FIN	L_REL	loc_rel
			GROUND	physical_object
		P_DIM VEL	∣↓©₁high	
EVENT_PROPERTIES	RTIES ASPECTUAL_CLASS bounded \lor unbounded \lor underspec			
		PHASE_ARRAY	Pα \wall	c ∐ ①
			Pµ walk	∐ ②
			Pω \wall	c∐③
	The represent	ation of walk quickly in the	locomotion fram	2

EVENT_LAYERS | PATH | P_DIM | VEL | \downarrow ©2 low

Head-verb external specification of manner: Depictive manner predicates

Depictive predicates are treated as additional predications that pertain to the figure but are not immediately linked to the situation designated by the motion verb, as one cannot only walk, shuffle, amble or sneak away, but also read, cook, eat or play the piano in one's slippers or barefooted.

walk FIGURE EVENT_LAYERS	AGENT MANNER	PROPERTIES walking_gait	DRESS FOOTWEAR slippers		
	PATH		L_REL GROUND	loc_rel physical_object	
		② INTER	L_REL GROUND	loc_rel physical_object	
		③ FIN	IL_REL	loc_rel physical_object	
EVENT_PROPERTIES	ASPECTUAL_CLA				
		PHASE_ARRAY	Pµ wall	1k ប៉ាបា ៤ បា ខា 1k បា ទា	

A (considerably simplified) representation of walk in slippers in the locomotion frame

Varieties of manner-of-motion: Force expressions

Geuder & Weisgerber (2008), Gamerschlag, Geuder & Petersen (2014)

- Verbs of vertical movement like *climb, klettern, steigen* (in its manner-of-motion reading) describe a manner of motion that specifies force configurations on a path.
- The force configuration for *climb*, *klettern*, *steigen* is the manner 'upward force exertion (against the ground)'
- This manner implies a direction ('upward'), which, however, applies only to the force exerted against a ground object, such as (the steps of) a ladder.
- The overall trajectory of the movement is independent of this force-related direction. Hence this manner of movement may occur on downward paths as well:
 - to climb up/down a mountain
 - auf das Dach klettern vom Dach klettern
 - in einen Schacht hinab/hinauf steigen
 - in ein Auto steigen

٠

٠

٠

٠

steigen_mm FIGURE	AGENT LEGS	13				
EVENT_LAYERS	MANNER		AGONIST	13		
	Imanien	Tronce	ANTAGONIST	6		
			EXERTION	DIR	upwai	rds
			INTENSITY	medium_high		
		EFFECTUATES	B caces Ausschneiden			
		UTION	GAIT		stepwise	
			1 1 INIT	L REL		loc rel
	1			GROU		physical_object
			I INTER	L REL		~in
				GROU		9 funnel STEPS 6
						OS ORIENTATION @
			3 FIN	L REL		in
			the second second	GROU	JND	9
		P_DIM	DIR	vertic	al LO	
			SHAPE	trace	shapes	
			VEL	measure_of_velocity		
			EXTENT	measure_of_extent		
EVENT_PROPERTIES	ASPECTUAL_CLA	SS	bounded		1.011.010.010	
			PHASE_ARRAY	Pot	\steig	en 🛛 🛈
				Pµ	steige	enn LI 🕄
				Po	\steig	en 🛛 🕄
	ORIGO		entity			
	TENSE		$ past \lor present \lor future$			
	ASPECT		perfective v imperfective v perfect v prospective			

Varieties of manner: force expression in den Schacht steigen

Outlook – what comes next?

- * Varieties of manner
 - space-dominant (to walk, run, limp)
 - time-dominant (to race, rush, dash; to amble, stroll)
 - intentional (to hasten, hurry)
 - instrumental (*to ski, skate, row*)
 - force-exerting (to climb up/down the hill, in den Schacht/auf die Leiter steigen)
 - related to a medium (to swim, flay, dive)
- * Division of labour in profiling: Serial Verb Constructions in Korean, Thai, ...
- Model psycholinguistic findings from HULC Lab experiments with Johannes Gerwien in FAMEu: manner types, weight assignments and weight propagation

Thank you!

michael.herweg@gmx.de